SJIF 2014 = 3.189 ISSN: 2348-3083 An International Peer Reviewed & Referred # SCHOLARLY RESEARCH JOURNAL FOR HUMANITY SCIENCE & ENGLISH LANGUAGE # CHARACTERIZATION OF MAIZE, WINTER BEANS AND FINGER MILLET VARIETIES THROUGH DIVERSITY BLOCK IN MAKWANPUR AND SARLAHI DISTRICTS, NEPAL ## Mahesh Badal¹ & Subodh Khanal² ¹Agriculture and Forestry University, Rampur Chitwan ²Asst. Professor, Institute of Agriculture and Animal Science, Paklihawa Campus # **Abstract** Diversity block was constructed for assessing the status of maize and finger millet and winter beans varieties in Chhatiwan V.D.C. and Parwanipur V.D.C. of Sarlahi and Makwanpur districts respectively and for winter Parwanipur (Sarlahi) and Raigaun, Makwanpur was proposively selected. 18, 21 and 22 varieties of maize, finger millet and winter beans were planted and characterized respectively in these locations. Upon analysis, varied temporal sequence of cultivation of these varieties was identified. The positive and negative traits were also evaluated minutely so as to assess the preference of these varieties. The current trend of these varieties were also assessed which showed that only one variety of maize and 3 varieties of finger millet has increasing trend. 2 varieties of maize were identified as threatened. Also, 5 varieties of maize and 1 variety of finger millet were gradually decreasing. These varieties can be value added, marketed and enhancement can be done accordingly. **Keywords:** Diversity block, varieties, traits Scholarly Research Journal's is licensed Based on a work at www.srjis.com #### 1. Introduction Agriculture is the backbone of Nepalese economy as it is still the main source of income and livelihood of 66% of rural population in Nepal as about 80% of population depends on subsistence farming (MOAD, Statistical Information of Nepalese Agriculture 2008/2009, 2009). The country has had major concerns on household food security and poor nutrition (FAO, 2004). FAO food deprivation data 2005-07 for Nepal showed that 4.5 million people live under the condition of undernourishment (FAOSTAT, 2011). Cereal crops are the staple food and contribute major share in area and production. Pulses (grain legumes) are important in terms of nutrition and subsistence farming as it plays role in enhancing the soil fertility by symbiotic nitrogen fixation. Pulses supply the major part of the dietary protein (20-25% protein by weight, which is 2-3 times that of wheat and rice) for majority of poor who cannot afford expensive animal protein and vegetarians. Crop residues and by-products are valuable as fodder, feed and firewood (FAOSTAT, 2011). Maize has been traditionally grown as a staple food crop for many years. In Nepal, there is about 9, 06,253 ha of area under maize cultivation and annual production is about 20,67,722 mt. with productivity of 2.28 mt/ha (MOAD, 2011). However, Nepal does not have its own hybrid till now for farmers to produce grain. In recent days, it has been developing itself as a multipurpose and cash crop. Twenty-four total maize varieties including two hybrids (Gaurav and Rampur hybrid 2) and one QPM (Poshilo Makai-1) have been released so far. Recommended varieties for different agri-environment are: High hills: Ganesh-1&2; Midhills: Manakamana 1, 2, 3, 4, 5 & 6, Deuti, Shitala, Poshilo Makai-1; Terai and Inner Terai: Rampur Composite, Arun-1& 2, hybrid "Gaurav and Rampur Hybrid-2. Moreover, the pipeline varieties are RML 32 x RML 17, RML 4 X RML 17, RML 95 X RML 96, RML 95 X RML 86 and RML 57 X RL 174. These hybrids have 8 to 10 ton/ha yield potential (NARC, 2016). Around 325000 hectare of land in Nepal is covered by different minor crops as millet, buckwheat, uwa, kaguno and barley. Among these minor crops finger millet is the most important in terms of production and area as it is the fourth most important cereal crops of Nepal. These crops can be handy in terms of food security and biodiversity conservation point of view (CDD, 2016). The diversity block is a technique to characterize local landraces under conditions of typical farmer management. Germplasm to be grown in the diversity block may be selected from the materials displayed in diversity fairs or from community member's seed stocks. Farmers using traditional practices manage the crops, while farmers and scientists monitor the plants to observe and record agro morphological characteristics. In Nepal, it was used to measure and analyze agro morphological characters and to validate farmer descriptors. Farmers were invited to watch the diversity block in the field and determine whether the farmers are consistent in naming and describing varieties (Sthapit, Shrestha, & Upreti, 2012). Though Nepal is said to be biodiversity hotspot, however, due to shift in cultivation practices, large landraces varieties of many cultivated crop are on the verge of extinction. Thus this paper focuses to characterize major crops (maize, finger millet and winter beans) varieties present in central region of Nepal which can be a pioneer step in conservation of those varieties. Thus, this study specifically aims: - 1. To characterize the landraces and improved varieties of maize, finger millet and winter beans collected at local level - 2. To observe and analyse actual diversity of selected crops - 3. To document special characters of selected crop varieties #### 2. Materials and Methods Makwanpur and Sarlahi were selected as case study districts. First and foremost, desk study was done along with field observation. It was followed by a baseline study to record necessary preliminary information. Sanosudha community of Chhatiwan V.D.C was selected from Makwanpur district to characterize maize varieties. Similarly, for fingermillet Parwanipur VDC and for winter bean Parwanipur and Raigaun were selected. Both of these districts lie in the Central Development Region of Nepal and are well connected to major cities of Nepal and India. The Makawanpur district borders to the capital city Kathmandu and is traversed by both East-West and North-South highways. Sarlahi district is well connected to the East-West high way and has open border to India. The research was conducted in Makawanpur and Sarlahi districts because they are one of the species rich districts of Nepal and easily assessable for conduction of study. Table 1: Biophysical and socio-economic characteristics of the study area | Characteristics | Makawanpur
(Hill) | Sarlahi (Plain) | | |---|----------------------|-----------------|--| | Temperature change | Medium* | Low* | | | Rainfall variability | Medium* | Low* | | | On-farm agricultural biodiversity | Medium** | Low** | | | Market access, access to modern technologies and inputs | Medium*** | High*** | | Adapted from: (K.C., 2011) *: 1-0.787: very high, 0.6-0.786: high, 0.356-0.6: medium, 0.181-0.355: low and 0.186-0.000: very low. It is based on GIS study made by National Adaptation Program of Action to Climate change, Ministry of Environment, Kathmandu, Nepal. The study was targeted to map the current climate change scenario in Nepal. **: High: subsistence level, with large variety of local biodiversity maintained on farm, medium: semi commercial, both local and improved varieties maintained on farm, low: commercial farming, mono cropping, very low biodiversity maintained on farm. ***: High: easy access to market, black topped and functional roads, fertilizer and agricultural inputs available year round, medium: periodic assess to market, graveled road and agricultural inputs available on periodic basis, low: no road facilities, difficulty in marketing and availability of agricultural inputs making farming difficult. PRA tools were used to identify and assess the rice diversity in the case study villages and to give an understanding of the socio economic and cultural diversity that influences agricultural diversity. The tools used in the PRAs were direct observations and group interviews. During this process, communities conserving the diversity of different crops were identified. For knowing the exact extent of diversity fair was conducted at local level. In the course of time, list of progressive farmers was prepared and site for constructing diversity block was selected. Diversity block was made so as to observe the different characters of rice varieties. After that foul cell analysis was done to identify threatened landraces. Nursery was prepared and seeds were sown accordingly. The layout was done accordingly and plants were transplanted. The field was monitored time and again during critical stages to note down the characters. During final stage village level workshop was conducted to share the result and increase the level of awareness. #### 3. Results and Discussion #### 3.1 Morphometry of Districts Geographically, Makawanpur has been expanded from 27° 10' north to 27° 40' north latitude and between 84° 41'east to 85° 31' East longitude and consists of 43 VDCs, three municipality, four electoral region and 13 Ilaka based on political and administrative system of Nepal. The altitude of the district is 166 m. to 2584 m from mean sea level (CBS, 2011). Similarly, Sarlahi has been expanded from 26° 45' north to 27° 10' north latitude and between 85° 20'east to 85° 50' East longitude and consists of 76 VDCs, three municipality, four electoral region and 15 Ilaka based on political and administrative system of Nepal. The altitude of the district is 60m to 659m from mean sea level (CBS, 2011). #### 3.2 Climate and Soil Makwanpur has sub-tropical climate lower flat terrains, sub-temperate climate in lower hills and temperate climate in high mountains. The district receives, on an average; an annual precipitation of 2650 ml, maximum temperature 17.7°C and minimum temperature 7.6°C (CBS, 2011). Moreover, Sarlahi district has tropical type of climate. The district receives, on an average; an annual precipitation of 1700 ml, maximum temperature 31°C and minimum temperature 20°C (CBS, 2011). #### 3.3 Demographic Status of Respondents The total population of Makawanpur district is 392604. The number of male is 199144 and female number is 193460. The popula- tion growth rate is 2.22 and average family size is 5.5. The population density of the district is 162 people per square kilometer (CBS, 2011). The average literacy rate of the district is 54.1% out of which 53.9% female and 72.6% male. Within the district there are 358 primary school, 49 lower secondary school, 60 secondary school 8 higher secondary school and 5 campus comprising of 108870 total student of the district (CBS, 2011). The total population of Sarlahi district is 635701. The number of male is 329182 and female number is 306519. The population growth rate is 2.55 and average family size is 5.72. The population density of the district is 505 people per square kilometer (CBS, 2011) [3]. The average literacy rate of the district is 36.53% out of which 25.36% female and 46.86% male. Within the district there are 279 primary school, 63 lower secondary school, 54 secondary school, 6 higher secondary school and 3 campus comprising of 113713 total student of the district (CBS, 2011). #### 3.4 Varietal Diversity of maize, finger millet and winter beans at study areas During the study of maize, 18 varieties were documented. These varieties were minutely analysed in diversity block. The traits were documented based on the farmer description. For assuring quality, experts and farmers analysed the data based on their judgment to maintain accuracy and minimize error. During this analysis, 8 varieties were characterized as distinct varieties while remaining were found to be similar to one or another. Moreover, with the same procedure the case for finger millet was analysed based on farmer descriptor and during the process 8 varieties were characterized as distinct varieties out of 13 while remaining was found to be similar to one to another. Also, out of 22 varieties selected for winterbeans 21 were found distinct. This information are presented in table 2. In addition to that, the characterization and use trends of all the selected varieties are presented in table 3, 4 and 5. Similar study was conducted in Kaski, Nepal where farmers maintain and increase crop genetic diversity and have vast knowledge on variety identification, selection, crop management, and microenvironments acquired from generations of hands-on experience (Tiwari, 1999). (Bajracharya, Rana, Gauchan, Sthapit, Jarvis, & Witcombe, 2000) pointed that diverse production environment, fragmented land holdings, fragile agro ecosystem, and socio cultural needs are reasons for growing diverse crop varieties and landraces in the country. Khanal and Badal, 2015 have also done similar study on characterization of rice varieties in Nepal. Table 2: Varieties of maize, finger millet and winter beans found to be similar to one another during characterization at Makwanpur and Sarlahi district. | Maize | | |------------------------------|--| | Rampur Yellow | Five varieties were phenotypically different at early stage | | Local yellow | but later on were confirmed to be Rampur Yellow. | | Local Black (| The varieties were phenotypically different at seed | | kalo makai) , | sowing but were found similar to local black based on | | Kalo jya makai, | characters studied. | | Rato dale | | | Local red, Rato | These varieties were phenotypically different at | | makai | sowing. But was later confirmed to be Local red. | | Local white and | Local white and Dare makai were found to be | | Daare Makai | phenotypically different at seed sowing but Daare makai was found similar to Local white based on characters | | | studied. | | Pop corn and
Murali Makai | The varieties were phenotypically different at seed sowing but later were found similar to Popcorn based on characters studied. | | Local yellow, | Shankar yellow, Raithane makai, Murali pahelo and | | Shankar Pahelo, | Rasane were found to be phenotypically different at | | Raithane makai, | seed sowing but later were confirmed to be Local | | Murali Pahelo, | yellow based on characters studied. | | Rasane | | | Khumal yellow and Khumaltare | Khumaltare Makai was phenotypically different at seed sowing but later was confirmed to be Khumal | | makai | yellow based on characters studied. | | Finger millet | These varieties were about the 11-11-11-11-11-11-11-11-11-11-11-11-11- | | Makwanpure and Hetaude | These varieties were phenotypically different at seed | | петацие | sowing but later the characteristics were found similar.
So, both were regarded as Makwanpure based on | | | characters studied. | | Mukde and Dalle | Dalle was phenotypically different than Mukde but was | | 1.Takac ana Dane | found to be Mukde based on its characters studied. | | | The state of s | | Doubba - 1 | Dhe danne mas aban stanically different than hadden | | Barkhe and Bhadaure | Bhadaure was phenotypically different than barkhe but was found to be barkhe based on its characters studied. | | Dilauaure | was found to be barkine based off its characters studied. | | | | | Hiude and | Kartike was phenotypically different than Hiude but | | Kartike | was found to be Hiude based on its characters studied | | | later on. | | Winter beans | | | | | | | |-------------------------------|--|--|--|--|--|--| | Lamte
Hariyo lamo
kosha | Hariyo lamo kosha was phenotypically different than Lamte but was found to be as lamte based on its characters studied later on. | | | | | | Table 3: Assessment of maize varieties in diversity block at Chattiwan VDC, Makawanpur | S.
N. | Maize
varietie
s | Local
name | History of cultivation | Distinguis
hing traits | Positive traits | Negative
traits | Cultivation
trend | |----------|-------------------------|--|--|---|---|---|----------------------| | 1 | Rampur
Yellow | Rampure | Old variety
grown since
35-40 years
when people
settled in the
area | Dark
Yellow and
rounded
shape grain | High yield, plant
height (medium),
early maturity,
good weight,
good cooking
quality (softness
of porridge) | - | Increasing | | 2 | Khumal
yellow | Khumalta
re | Introduced
20-25 years
before | Bold and
flat shaped
yellow
grain | Good yield | poor taste
(porridge), late
maturity,
susceptible to
store pest
(weevil) | Decreasing | | 3 | Rasane | Eghar
sale | Introduced
20-25 years
before | Tall plant,
Big Size
grain, Red
color cob. | Good yield, price
high than local
white, drought
tolerant | - | Decreasing | | 4 | Popcorn
(Yellow
) | Murali | NA (need to explore) | Small and
thin plant,
slender ear,
round light
yellow
grain | Good for
popping, tolerant
to store pest
(weevil) | Poor yield,
late maturity,
poor husk
cover | Decreasing | | 5 | Local
(yellow) | Raithane,
Sathiya,
Pahelo
dalle | Grown from generations in the area | Small and
thin plant,
yellowish
round
grain, Early
maturity, | Early maturity, Good eating quality (both porridge and roasted cobs) | Low yield,
low grain
recovery, | Decreasing | | 6 | Local
(Black) | Kalo
Dhinde | Migrants of
South
Lalitpur
introduced
some 25
years before | Black and
flat grain,
late
maturity | Tolerant to
drought, good for
home made
alcohol | Low yield,
Late maturity,
poor eating
quality
(pooridge) | threatened | | 7 | Local
(Red) | Rato | NA (need to explore) | Red and flat grain, Medium maturity | - | Low yield, | threatened | | 8 | Local
(white) | Dare | Introduced
some 20
years before | White and flat and dented grain, medium maturity | Good yield, | Susceptible to
store pest
(weevil), poor
cooking
quality
(porridge) | Decreasing | ^{**} The yield was characterized based on National standard made by Ministry of Agriculture Development (MOAD), 2009 which can be stated as: yield less than 2.35 ton/ha as low yielding variety, yield equal to 2.35 ton/h as medium yielding variety and yield more than 2.35 ton/ha as high yielding variety. Moreover in case of height variety less than 150 cm was characterized as dwarf variety, height more than 150 cm as tall variety and variety height equal to 150 cm as medium variety. Table 4: Assessment of finger millet varieties in diversity block at Parwanipur VDC, Sarlahi | S | Finger
Millet | Loca
l | Histor
y of | Distinguishing traits | Positive
traits | Nega
tive | Culti
vatio | |---|------------------|-------------------------|---|---|---|---|----------------| | N | Varieti
es | nam
e | cultiva
tion | | | trait
s | n
trend | | 1 | Makawa
npure | Heta
ude, | Introd
uced
25
years
before | long flag leaf, green blade
pubescence, white flower, late
flowering, tall, long, medium
dense, high shattering of
inflorescence, intermediate
tillers, lodging problem, poor
moisture stress tolerance | good
recovery
percenta
ge of
grain
and flour | Tall,
lodgi
ng
probl
em | Const
ant | | 2 | Dalle | Dall
e,
Mud
ke | Introd
uced
15
years
before | long flag leaf, green blade
pubescence, white flower, late
flowering, medium height,
short, medium dense, no
shattering of inflorescence,
yellow color grain, brown
color husk, intermediate
tillers, not lodging problem,
poor moisture stress tolerance | good
taste,
high
yield | hard
to
thres
h | increa
sing | | 3 | Barkhe | Bhad
aure | introdu
ced 30
years
before | long flag leaf, green blade
pubescence, white flower,
medium flowering period,
medium height, short, medium
dense, no shattering of
inflorescence, low tillers, no
lodging problem, intermediate
moisture stress tolerance | early
maturity,
good
yield | not
good
taste | Decre asing | | 4 | Pangdu
re | | Grown
from
genera
tion in
the
area | long flag leaf, green blade pubescence, white flower, medium flowering period, dwarf, short, medium dense, high shattering of inflorescence, slightly red grain, brown color husk, low tillers, no lodging problem, intermediate moisture stress tolerance | have
medicin
al use
for
breast
and knee
rupture | straw
is not
prefe
rred
by
anim
als | Increa
sing | | 5 | Pahelo | | introdu
ced 25
years
before | medium flag leaf, green blade pubescence, white flower, medium flowering period, dwarf, short, low dense, medium shattering of inflorescence, yellow color grain, brown color husk, low tillers, no lodging problem, intermediate moisture stress tolerance | good
taste,
straw
preferre
d by
animals | | Increa
sing | | 6 | Hiude | Karti
ke | Grown
from
genera
tion in | long flag leaf, green blade
pubescence, white flower, late
flowering period, medium
height, short, medium dense, | drought
tolerant,
not
shatterin | | consta
nt | | | | the
area | high shattering of
inflorescence, yellow grain,
brown color husk, high tillers,
no lodging problem, poor
moisture stress tolerance | g
problem
of grain | | | |---|---------|---|--|--|-------------------------------------|--------------| | 7 | Kalo | Grown
from
genera
tion in
the
area | long flag leaf, green blade
pubescence, white flower,
medium flowering period, tall,
medium long, medium dense,
no shattering of inflorescence,
yellow color grain, brown
color husk, medium tillers, no
lodging problem, intermediate
moisture stress tolerance | good
taste,
good
recovery
percenta
ge of
flour | disea
se
probl
em | Const
ant | | 8 | Laibari | | long flag leaf, green blade pubescence, white flower, late flowering period, tall, long high dense, high shattering of inflorescence, yellow color grain, brown color husk, medium tillers, lodging problem, intermediate moisture stress tolerance | good
recovery
percenta
ge of
grain
and flour | Tall,
lodgi
ng
probl
em | Const
ant | ** The yield was characterized based on National standard made by Ministry of Agriculture Development (MOAD), 2009 which can be stated as: yield less than 1.11 ton/ha as low yielding variety, yield equal to 1.11 ton/h as medium yielding variety and yield more than 1.11 ton/ha as high yielding variety. Moreover in case of height variety less than 100 cm was characterized as dwarf variety, height morethan 100 cm as tall variety and variety height equal to 100 cm as medium variety. Table: 5 Assessment of winter bean varieties in diversity block at Parwanipur, Sarlahi and Raigaun VDC, Makawanpur | S
N | Winter
Bean
Varieti | Lo
cal
na | History
of
cultivati | Distinguishing traits | Positive
traits | Negati
ve
traits | Cultiv
ation
trend | |--------|-------------------------------|-----------------|----------------------------|--|--------------------|------------------------------|--------------------------| | | es | me | on | | | | | | 1 | Tate
Thulo | | Newly
Introduc
ed | Green stem color, green leaf, large and wide leaf, white flower, light red pod color, medium size pod length and wide, five seed per pod, soft pod, average in yield, aromatic, tasty, pod rot major problem | tasty, | pod
rot
proble
m | Newly
Introd
uced | | 2 | Hariyo
Sano
Karang
e | | Newly
Introduc
ed | green stem color, green leaf,
small and tapering leaf, white
flower, green pod color, short
pod length and narrow, four
seed per pod, soft pod,
average in yield, aromatic,
not tasty, viral disease is
major problem | | not
tasty,
hard
pod | Newly
Introd
uced | | 3 | Madan
e | | Newly
Introduc
ed | green stem color, green leaf,
small and tapering leaf,
yellow flower, green pod
color, long wide pod, hard | high yield | not
tasty | Newly
Introd
uced | | | | | | pod, high yield, non aromatic, | | | | |--------|-----------------------------|----|-------------------------|--|----------------------------|-------------------------------------|-------------------------| | 4 | Rato
Simi | | Newly
Introduc
ed | Red color stem, small tapering leaf, violet flower, light violet pod color, medium length and wide pod, soft pod, low yield, aromatic, tasty | tasty | low
yield | Newly
Introd
uced | | 5 | Hariyo
Chhoto | | Newly
Introduc
ed | small stem, green leaf, large
tapering leaf, violet flower,
light violet pod color, short
and narrow pod, soft pod, low
yield, aromatic, tasty | tasty | low
yield | Newly
Introd
uced | | 6 | Seto
Simi | | Newly
Introduc
ed | Green color stem, green leaf, large tapering leaf, white color flower, light green color pod, medium length and narrow pod, soft pod, average in yield, aromatic, tasty | tasty, average
in yield | | Newly
Introd
uced | | 7 | Thulo
Pate | | Newly
Introduc
ed | green color stem, green leaf,
medium size tapering leaf,
green color flower, medium
length narrow pod, soft pod,
low in yield, aromatic, not so
tasty | | not so
tasty,
low in
yield | Newly
Introd
uced | | 8 | Karang
e Thulo | NG | | Germination failure | | | | | 9 | Winter
Bean | NG | | Germination failure | | | | | 1 0 | Lamo
Simi | | Newly
Introduc
ed | Green color stem, green leaf, large tapering leaf, white flower, light green color pod, long wide pod, soft pod, brown color seed, low yield, aromatic, tasty | tasty, | low
yield | Newly
Introd
uced | | 1 1 | Seto
Chhoto | | Newly
Introduc
ed | Green stem color, green leaf, medium size tapering leaf, red flower, green pod color, medium length wide pod, soft pod, black seed, low yield, aromatic, not tasty | | not
tasty,
low
yield | Newly
Introd
uced | | 1 2 | Hariyo
Simi | | | Germination failure | | | | | 1 3 | Rato
Sano | | Newly
Introduc
ed | green color stem, green color leaf with red venation, small tapering leaf, violet flower, light red pod, short and wide pod, soft pod, brown seed, medium in yield, aromatic | average in
yield | | Newly
Introd
uced | | 1 4 | Kerau
Simi | | Newly
Introduc
ed | Green color stem, green color leaf, small tapering leaf, white flower, green pod, short and thin pod, hard pod, brown color pod, low yield, aromatic | | low
yield | Newly
Introd
uced | | 1 5 | Karang
e
Majhau
la | | Newly
Introduc
ed | green stem, green leaf,
tapering leaf, red color
flower, green color pod, long
wide pod, soft pod, brown
seed, medium in yield,
aromatic, not tasty | medium in
yield | not
tasty | Newly
Introd
uced | | 1
6 | Rato
Bhadau
re | | Newly
Introduc
ed | green stem, green leaf,
tapering leaf, white flower,
light white color pod, short | | low
yield | Newly
Introd
uced | | | | | | and wide pod, soft pod, black seed, low yield, aromatic | | | | |--------|--------------------------|-------------------------------------|-------------------------|--|-------|-------------------------------|-------------------------| | 1
7 | Lamte | Har
iyo
La
mo
Ko
sha | Newly
Introduc
ed | green stem, green leaf, large
tapering leaf, white color
flower, light green color pod,
long wide pod, soft pod,
brown seed, low yield,
aromatic, tasty | tasty | low
yield | Newly
Introd
uced | | 1 8 | Sano
Chhoto | | Newly
Introduc
ed | Green stem, green leaf, large
tapering leaf, white flower,
light green pod, long wide
pod, soft pod, red color seed,
low yield, aromatic, tasty | | low
yield | Newly
Introd
uced | | 1 9 | Matark
osha | | Newly
Introduc
ed | Green stem. green leaf, medium size tapering pod, red flower, green pod, long and wide pod, soft pod, brown color seed, low yield, aromatic, not tasty | | not
tasty,
low
yield | Newly
Introd
uced | | 0 | Seto
lamo | | Newly
Introduc
ed | Germination failure | | | | | 2 | Hariyo
Lamo
Jhuppa | | Newly
Introduc
ed | Green stem, green leaf, small tapering leaf, white flower, green pod, long and wide pod, soft pod, black seed, low yield, aromatic, not tasty | | not
tasty,
low
yield | Newly
Introd
uced | Only 1 variety of maize seems to possess increasing cultivation whereas 2 varieties were threatened and remaining 5 varieties cultivation trend was gradually decreasing. However, 3 varieties of finger millet were being popular, 1 variety's acreage was decreasing and 4 varieties cultivation trend was constant. Moreover, all the selected varieties of winter beans were comparatively new so cultivation trend could not be assessed. Group discussion and key informant interviews were done to document the trend of these varieties. Also, further clarification of information was done during village level workshop. The trend of selection of these varieties is governed by several factors. According to (Upreti & Upreti, 2002), the decreasing trend of landraces and other varieties are governed by cumulative effects of change in land use, weak regulatory framework, migration and socio economic transformation. #### **Conclusion** Nepal is considered to be biodiversity hotspots and a biologically diverse country. Maize is one of the important cereal crops of Nepal, finger millet being highly hardy and nutritive in local context and winter beans a very potential legume crop. Many improved and landraces are used for cultivation so far. However, proper characterization of available varieties has not been done. This study was more focused to use diversity block so as to find the similarities and differences of the preferred varieties of these crops. Distinguishing traits were identified, history of cultivation was explored, positive and negative traits were assessed. Moreover, the overall trends in the use of varieties were known so as to assist in better management practices of the selected varieties. #### Acknowledgement First and foremost, we would like to express our ardent gratitude to Dinesh Kumar Shrestha, Executive Director of Parivartan Nepal, for providing exceptional guidance and regular supervision during research and the preparation of this manuscript. We would also like to take the privilege for extending affectionate thanks to local farmers of selected districts of diversity block. Moreover credible thanks go to Agriculture and Forestry University Rampur Chitwan and Institute of Agriculture and Animal Science, Paklihawa campus for timely providing necessary facilities and logistic supports. #### References - Bajracharya, J., Rana, R., Gauchan, D., Sthapit, B., Jarvis, D., & Witcombe, J. (2000). Retrieved 05,14,2015 from - www.legatoproject.net/files/DOWNLOAD/1398_Rice%20landrace%20diversity%20in%20Nepal%20S ocioeconomic%20and%20ecological%20factors%20determing%20rice%20landrace%20diversity%20 in%20three%20agroecozones.pdf - CBS. (2011). National population and household census. Central Bereau of Statistics, Kathmandu, Nepal. - CDD. (2016). Retrieved 05 09, 2016, from http://www.cddnepal.gov.np/index.php?option=cms&id=28 - FAO. (2004). Human Energy Requirements. Report of a Joint FAO/WHO/UNU Expert Consultation, FAO Food and nutrition technical report series 1. United Nations University/ World Health Organization/ Food and Agriculture Organization of the United Nations. - FAOSTAT. (2011). Retrieved 05 09, 2016, from http://faostat.fao.org/site/339/default.aspx - K.C., K. (2011). Does increasing agricultural biodiversity contribute to food security? Exploring the relation between crop diviersity and food security in Nepal. University of Guelph. - MOAD. (2009). Statistical Information of Nepalese Agriculture 2008/2009. kathmandu, Nepal: Agribusiness Promotion and Statistics Division, Ministry of Agriculture Development. - MOAD. (2011). kathmandu,Nepal: Agribusiness Promotion and Statistics Division, Ministry of Agriculture Development. - NARC. (2016). Retrieved 05 08, 2016, from http://narc.gov.np/org/maize_research_program.php - Sthapit, B., Shrestha, P., & Upreti, M. (2012). On farm management of agricultural biodiversity in Nepal. . Bioversity International. - Tiwari, P. (1999). Retrieved 05 14, 2015, from http://www.agroecology.org/Case%20Studies/Kaski.html - Upreti, B., & Upreti, Y. (2002). Factors leading to agro biodiversity loss in developing countries: a case from Nepal. Biodiversity and Conservation, 11(9), 1607-1621.